Printed Pages – 6

Roll No. :

B. E. (Fourth Semester) Examination, 2021

(Old Scheme)

(AEI, EEE, El, ET & T & Mechatronics Engg. Branch)

ANALOG ELECTRONIC CIRCUITS

Time Allowed: Three hours

Maximum Marks: 80

Minimum Pass Marks: 28

Note: Part (a) of each question is compulsory and attempt any two part from (b) and (c) of each questions.

(b) Draw the circuit and drawe the espression for CE Unit-I

1. (a) Which configuration among CB, CE and CC is used as a constant source?

4

(b) With the help of circuit diagram state and prove Miller theorem.

7

- (c) Derive the expressions for input resistance (Z_i) output resistance (Z_0) and voltage gain (A_i) for a JFET amplifier with potential Divider bias and self-bias (R_s) by passed.
- (d) Show that the ratio of voltage gains and current gain of a BJT Amplifier with load and source resistance taken into account is independent of h-parameters of the transistor provided the equivalent current and voltage sources have the same resistance.

Mar when Unit-II

- 2. (a) How do hybrid- π parameters vary with temperature?
 - (b) Draw the circuit and derive the expression for CE short circuit current gain A_i in terms at any frequency f and f_{β} of the BJT.

(c) Prove that gain bandwidth product:

$$|A_{VS} \text{ of } H| = \frac{f_T}{1 + 2\pi f_T C_c R_L} \frac{R_L}{R_s + rbb'}$$

(d) The following measurements at room temperature are made at $g_m = 50 \text{mA/V}$, $r_{b'e} = 1 \text{ K}$, $C_e = 3 \text{ pF}$ and $C_c = 0.2 \text{ pF}$. Compute f_β and f_I .

would an bessess to Unit-III plan supple a good

- 3. (a) Justify, multistage amplifier reduces Bandwidth.
 - (b) Define noise. What are the various sources of noise? Explain in brief?
 - (c) Justify with derivation "the bandwidth of cascaded amplifier is always less than of the badwidth of single stage amplifier."
 - (d) When n identical (non-interacting) stages of amplifiersare cascaded, derive the expressions for overall gain,lower cut-off frequency and higher cut-off frequency.

2

7

PTO

- **4.** (a) What type of feedback is used in amplifiers? Mention its advantages.
 - (b) An amplifier consists of three identical stages connected in cascade. The output voltage is sampled and returned to the input in series opposing. If it is

specified that the relative change $\frac{dA_F}{A_F}$ in the closed

loop voltage gain A_f must not exceed ψf , show that the maximum value of the open loop grain A of the amplifier is given by

$$A = 3A_f \left| \frac{\Psi_1}{\Psi_2} \right|$$
 where $\Psi_1 = \frac{dA_1}{A_1}$

(c) Draw an equivalent circuit of feedback amplifier which given high R_i and high R_0 . Also derive the relation for R_i R_0 and R'_{of} in terms of forward and backward gain for the same topology.

[5]

(d) For the circuit shown take $R_C = 4 \text{ K}$, R' = 40 K,

$$R_s = 10 \text{ K}, h_{ie} = 1.1 \text{ K}, h_{fe} = 50 \text{ and } h_{re} = h_{oe}$$

0.

2

- (i) A_{vf}
 - (ii) R_{if} and
 - (iii) R'_{ol}

Unit-V

5. (a) Drawe the equivalent circuit of quartz crystal.

2

(b) Draw the circuit and explain the working of Hartely oscillator using BJT. Write expression for frequency of oscillation.

7

(c) What do you mean by frequency stability of an oscillator? State the frequency stability criterion for an oscillator. How you can compare the frequency stability of two oscillators?

7

(d) The gain of a forward amplifier is frequency

dependent and given by $A = \left(\frac{-9 \times 10^6}{j_W}\right)$. If the

feedback fraction is $\beta = \left(\frac{6 \times 10^3}{3 \times 10^3 + jw}\right)$ find the

frequency of oscillations.

7